Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 127
1.
Toxicol In Vitro ; 97: 105793, 2024 May.
Article En | MEDLINE | ID: mdl-38401745

To combat opioid abuse, the U.S. Food and Drug Administration (FDA) released a comprehensive action plan to address opioid addiction, abuse, and overdose that included increasing the prevalence of abuse-deterrent formulations (ADFs) in opioid tablets. Polyethylene oxide (PEO) has been widely used as an excipient to deter abuse via nasal insufflation. However, changes in abuse patterns have led to unexpected shifts in abuse from the nasal route to intravenous injection. Case reports identify adverse effects similar to thrombotic thrombocytopenic purpura (TTP) syndrome following the intravenous (IV) abuse of opioids containing PEO excipient. Increased risk of IV opioid ADF abuse compared to clinical benefit of the drug led to the removal of one opioid product from the market in 2017. Because many generic drugs containing PEO are still in development, there is interest in assessing safety consistent with generic drug regulation and unintended uses. Currently, there are no guidelines or in vitro assessment tools to characterize the safety of PEO excipients taken via intravenous injection. To create a more robust excipient safety evaluation tool and to study the mechanistic basis of HMW PEO-induced TMA, a dynamic in vitro test system involving blood flow through a needle model has been developed.


Analgesics, Opioid , Opioid-Related Disorders , Humans , Polyethylene Glycols/toxicity , Polymers , Molecular Weight , Excipients , In Vitro Techniques
2.
ASAIO J ; 70(5): 442-450, 2024 May 01.
Article En | MEDLINE | ID: mdl-38266069

Normothermic ex vivo lung perfusion (EVLP) can resuscitate marginal lung allografts to increase organs available for transplantation. During normothermic perfusion, cellular metabolism is more active compared with subnormothermic perfusion, creating a need for an oxygen (O 2 ) carrier in the perfusate. As an O 2 carrier, red blood cells (RBCs) are a scarce resource and are susceptible to hemolysis in perfusion circuits, thus releasing cell-free hemoglobin (Hb), which can extravasate into the tissue space, thus promoting scavenging of nitric oxide (NO) and oxidative tissue damage. Fortunately, polymerized human Hb (PolyhHb) represents a synthetic O 2 carrier with a larger molecular diameter compared with Hb, preventing extravasation, and limiting adverse reactions. In this study, a next-generation PolyhHb-based perfusate was compared to both RBC and asanguinous perfusates in a rat EVLP model. During EVLP, the pulmonary arterial pressure and pulmonary vascular resistance were both significantly higher in lungs perfused with RBCs, which is consistent with RBC hemolysis. Lungs perfused with PolyhHb demonstrated greater oxygenation than those perfused with RBCs. Post-EVLP analysis revealed that the PolyhHb perfusate elicited less cellular damage, extravasation, iron tissue deposition, and edema than either RBCs or colloid control. These results show promise for a next-generation PolyhHb to maintain lung function throughout EVLP.


Blood Substitutes , Hemoglobins , Lung Transplantation , Perfusion , Rats, Sprague-Dawley , Hemoglobins/administration & dosage , Animals , Lung Transplantation/methods , Lung Transplantation/adverse effects , Rats , Perfusion/methods , Humans , Blood Substitutes/pharmacology , Male , Lung , Oxygen/metabolism , Allografts , Hemolysis/drug effects , Erythrocytes
3.
Blood Adv ; 8(7): 1687-1697, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38231087

ABSTRACT: Glycophorin A (GPA), a red blood cell (RBC) surface glycoprotein, can maintain peripheral blood leukocyte quiescence through interaction with a sialic acid-binding Ig-like lectin (Siglec-9). Under inflammatory conditions such as sickle cell disease (SCD), the GPA of RBCs undergo structural changes that affect this interaction. Peripheral blood samples from patients with SCD before and after RBC transfusions were probed for neutrophil and monocyte activation markers and analyzed by fluorescence-activated cell sorting (FACS). RBCs were purified and tested by FACS for Siglec-9 binding and GPA expression, and incubated with cultured endothelial cells to evaluate their effect on barrier function. Activated leukocytes from healthy subjects (HS) were coincubated with healthy RBCs (RBCH), GPA-altered RBCs, or GPA-overexpressing (OE) cells and analyzed using FACS. Monocyte CD63 and neutrophil CD66b from patients with SCD at baseline were increased 47% and 27%, respectively, as compared with HS (P = .0017, P = .0162). After transfusion, these markers were suppressed by 22% and 17% (P = .0084, P = .0633). GPA expression in RBCSCD was 38% higher (P = .0291) with decreased Siglec-9 binding compared with RBCH (0.0266). Monocyte CD63 and neutrophil CD66b were suppressed after incubation with RBCH and GPA-OE cells, but not with GPA-altered RBCs. Endothelial barrier dysfunction after lipopolysaccharide challenge was restored fully with exposure to RBCH, but not with RBCSCD, from patients in pain crisis, or with RBCH with altered GPA. Pretransfusion RBCSCD do not effectively maintain the quiescence of leukocytes and endothelium, but quiescence is restored through RBC transfusion, likely by reestablished GPA-Siglec-9 interactions.


Anemia, Sickle Cell , Vascular Diseases , Humans , Endothelial Cells/metabolism , Glycophorins/metabolism , Erythrocytes/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
4.
Nutrients ; 15(20)2023 Oct 20.
Article En | MEDLINE | ID: mdl-37892532

Long-chain polyunsaturated fatty acids (LC-PUFAs) are important modulators of red blood cell (RBC) rheology. Dietary LC-PUFAs are readily incorporated into the RBC membrane, improving RBC deformability, fluidity, and hydration. Female C57BL/6J mice consumed diets containing increasing amounts of fish oil (FO) ad libitum for 8 weeks. RBC deformability, filterability, and post-transfusion recovery (PTR) were evaluated before and after cold storage. Lipidomics and lipid peroxidation markers were evaluated in fresh and stored RBCs. High-dose dietary FO (50%, 100%) was associated with a reduction in RBC quality (i.e., in vivo lifespan, deformability, lipid peroxidation) along with a reduced 24 h PTR after cold storage. Low-dose dietary FO (6.25-12.5%) improved the filterability of fresh RBCs and reduced the lipid peroxidation of cold-stored RBCs. Although low doses of FO improved RBC deformability and reduced oxidative stress, no improvement was observed for the PTR of stored RBCs. The improvement in RBC deformability observed with low-dose FO supplementation could potentially benefit endurance athletes and patients with conditions resulting from reduced perfusion, such as peripheral vascular disease.


Dietary Fats, Unsaturated , Erythrocyte Deformability , Humans , Female , Mice , Animals , Mice, Inbred C57BL , Erythrocytes/metabolism , Fish Oils/pharmacology , Fish Oils/metabolism , Fatty Acids, Unsaturated/metabolism , Fatty Acids/metabolism , Dietary Fats, Unsaturated/metabolism , Blood Preservation/methods
5.
Mol Pharm ; 20(11): 5739-5752, 2023 11 06.
Article En | MEDLINE | ID: mdl-37843033

Polymerized human hemoglobin (PolyhHb) has shown promise in preclinical hemorrhagic shock settings. Different synthetic and purification schemes can control the size of PolyhHbs, yet research is lacking on the impact of polymerized hemoglobin size on tissue oxygenation following hemorrhage and resuscitation in specialized animal models that challenge their resuscitative capabilities. Pre-existing conditions that compromise the vasculature and end organs, such as the liver, may limit the effectiveness of resuscitation and exacerbate the toxicity of these molecules, which is an important but minimally explored therapeutic dimension. In this study, we compared the effective oxygen delivery of intermediate molecular weight PolyhHb (PolyhHb-B3; 500-750 kDa) to high molecular weight PolyhHb (PolyhHb-B4; 750 kDa-0.2 µm) for resuscitative effectiveness in guinea pig models subjected to hemorrhagic shock. We evaluated how the size of PolyhHb impacts hemodynamics and tissue oxygenation in normal guinea pigs and guinea pigs on an atherogenic diet. We observed that while PolyhHb-B3 and -B4 equivalently restore hemodynamic parameters of normal-dieted guinea pigs, high-fat-dieted guinea pigs resuscitated with PolyhHb-B4 have lower mean arterial pressures, impaired tissue oxygenation, and higher plasma lactate levels than those receiving PolyhHb-B3. We characterized the plasma of these animals following resuscitation and found that despite similar oxygen delivery kinetics, circulating PolyhHb-B3 and -B4 demonstrated a size-dependent increase in the plasma viscosity, consistent with impaired perfusion in the PolyhHb-B4 transfusion group. We conclude that intermediate-sized PolyhHbs (such as -B3) are ideal for further research given the effective resuscitation of hemorrhagic shock based on tissue oxygenation in hypercholesterolemic guinea pigs.


Hypercholesterolemia , Shock, Hemorrhagic , Humans , Guinea Pigs , Animals , Shock, Hemorrhagic/drug therapy , Hypercholesterolemia/drug therapy , Oxygen , Hemodynamics , Hemoglobins
6.
Front Physiol ; 14: 1246910, 2023.
Article En | MEDLINE | ID: mdl-37719461

Introduction: Generating physiologically relevant red blood cell extracellular vesicles (RBC-EVs) for mechanistic studies is challenging. Herein, we investigated how to generate and isolate high concentrations of RBC-EVs in vitro via shear stress and mechanosensitive piezo1 ion channel stimulation. Methods: RBC-EVs were generated by applying shear stress or the piezo1-agonist yoda1 to RBCs. We then investigated how piezo1 RBC-EV generation parameters (hematocrit, treatment time, treatment dose), isolation methods (membrane-based affinity, ultrafiltration, ultracentrifugation with and without size exclusion chromatography), and storage conditions impacted RBC-EV yield and purity. Lastly, we used pressure myography to determine how RBC-EVs isolated using different methods affected mouse carotid artery vasodilation. Results: Our results showed that treating RBCs at 6% hematocrit with 10 µM yoda1 for 30 min and isolating RBC-EVs via ultracentrifugation minimized hemolysis, maximized yield and purity, and produced the most consistent RBC-EV preparations. Co-isolated contaminants in impure samples, but not piezo1 RBC-EVs, induced mouse carotid artery vasodilation. Conclusion: This work shows that RBC-EVs can be generated through piezo1 stimulation and may be generated in vivo under physiologic flow conditions. Our studies further emphasize the importance of characterizing EV generation and isolation parameters before using EVs for mechanistic analysis since RBC-EV purity can impact functional outcomes.

7.
Radiat Prot Dosimetry ; 199(14): 1539-1550, 2023 Sep 18.
Article En | MEDLINE | ID: mdl-37721065

Following large-scale radiation events, an overwhelming number of people will potentially need mitigators or treatment for radiation-induced injuries. This necessitates having methods to triage people based on their dose and its likely distribution, so life-saving treatment is directed only to people who can benefit from such care. Using estimates of victims following an improvised nuclear device striking a major city, we illustrate a two-tier approach to triage. At the second tier, after first removing most who would not benefit from care, biodosimetry should provide accurate dose estimates and determine whether the dose was heterogeneous. We illustrate the value of using in vivo electron paramagnetic resonance nail biodosimetry to rapidly assess dose and determine its heterogeneity using independent measurements of nails from the hands and feet. Having previously established its feasibility, we review the benefits and challenges of potential improvements of this method that would make it particularly suitable for tier 2 triage. Improvements, guided by a user-centered approach to design and development, include expanding its capability to make simultaneous, independent measurements and improving its precision and universality.


Nails , Radiation Injuries , Humans , Triage , Electron Spin Resonance Spectroscopy , Hand
8.
J Proteome Res ; 22(9): 2925-2935, 2023 09 01.
Article En | MEDLINE | ID: mdl-37606205

Sickle cell disease and ß-thalassemia represent hemoglobinopathies arising from dysfunctional or underproduced ß-globin chains, respectively. In both diseases, red blood cell injury and anemia are the impetus for end organ injury. Because persistent erythrophagocytosis is a hallmark of these genetic maladies, it is critical to understand how macrophage phenotype polarizations in tissue compartments can inform on disease progression. Murine models of sickle cell disease and ß-thalassemia allow for a basic understanding of the mechanisms and provide for translation to human disease. A multi-omics approach to understanding the macrophage metabolism and protein changes in two murine models of ß-globinopathy was performed on peripheral blood mononuclear cells as well as spleen and liver macrophages isolated from Berkley sickle cell disease (Berk-ss) and heterozygous B1/B2 globin gene deletion (Hbbth3/+) mice. The results from these experiments revealed that the metabolome and proteome of macrophages are polarized to a distinct phenotype in Berk-ss and Hbbth3/+ compared with each other and their common-background mice (C57BL6/J). Further, spleen and liver macrophages revealed distinct disease-specific phenotypes, suggesting that macrophages become differentially polarized and reprogrammed within tissue compartments. We conclude that tissue recruitment, polarization, and metabolic and proteomic reprogramming of macrophages in Berk-ss and Hbbth3/+ mice may be relevant to disease progression in other tissue.


Anemia, Sickle Cell , beta-Thalassemia , Humans , Animals , Mice , Monocytes , beta-Thalassemia/genetics , Leukocytes, Mononuclear , Proteomics , Anemia, Sickle Cell/genetics , Macrophages , Disease Progression
9.
Front Med (Lausanne) ; 10: 1149005, 2023.
Article En | MEDLINE | ID: mdl-37502360

Introduction: Human and murine sickle cell disease (SCD) associated pulmonary hypertension (PH) is defined by hemolysis, nitric oxide depletion, inflammation, and thrombosis. Further, hemoglobin (Hb), heme, and iron accumulation are consistently observed in pulmonary adventitial macrophages at autopsy and in hypoxia driven rodent models of SCD, which show distribution of ferric and ferrous Hb as well as HO-1 and ferritin heavy chain. The anatomic localization of these macrophages is consistent with areas of significant vascular remodeling. However, their contributions toward progressive disease may include unique, but also common mechanisms, that overlap with idiopathic and other forms of pulmonary hypertension. These processes likely extend to the vasculature of other organs that are consistently impaired in advanced SCD. Methods: To date, limited information is available on the metabolism of macrophages or monocytes isolated from lung, spleen, and peripheral blood in humans or murine models of SCD. Results: Here we hypothesize that metabolism of macrophages and monocytes isolated from this triad of tissue differs between Berkley SCD mice exposed for ten weeks to moderate hypobaric hypoxia (simulated 8,000 ft, 15.4% O2) or normoxia (Denver altitude, 5000 ft) with normoxia exposed wild type mice evaluated as controls. Discussion: This study represents an initial set of data that describes the metabolism in monocytes and macrophages isolated from moderately hypoxic SCD mice peripheral lung, spleen, and blood mononuclear cells.

10.
Clin Appl Thromb Hemost ; 29: 10760296231186144, 2023.
Article En | MEDLINE | ID: mdl-37469147

Aberrant coagulation in sickle cell disease (SCD) is linked to extracellular vesicle (EV) exposure. However, there is no consensus on the contributions of small EVs (SEVs) and large EVs (LEVs) toward underlying coagulopathy or on their molecular cargo. The present observational study compared the thrombin potential of SEVs and LEVs isolated from the plasma of stable pediatric and adult SCD patients. Further, EV lipid and protein contents were analyzed to define markers consistent with activation of thrombin and markers of underlying coagulopathy. Results suggested that LEVs-but not SEVs-from pediatrics and adults similarly enhanced phosphatidylserine (PS)-dependent thrombin generation, and cell membrane procoagulant PS (18:0;20:4 and 18:0;18:1) were the most abundant lipids found in LEVs. Further, LEVs showed activated coagulation in protein pathway analyses, while SEVs demonstrated high levels of cholesterol esters and a protein pathway analysis that identified complement factors and inflammation. We suggest that thrombin potential of EVs from both stable pediatric and adult SCD patients is similarly dependent on size and show lipid and protein contents that identify underlying markers of coagulation and inflammation.


Anemia, Sickle Cell , Extracellular Vesicles , Humans , Adult , Child , Thrombin/metabolism , Extracellular Vesicles/metabolism , Proteins/metabolism , Inflammation/metabolism , Lipids
11.
Front Physiol ; 14: 1151268, 2023.
Article En | MEDLINE | ID: mdl-37007990

Introduction: Exercise intolerance is a common clinical manifestation in patients with sickle cell disease (SCD), though the mechanisms are incompletely understood. Methods: Here we leverage a murine mouse model of sickle cell disease, the Berkeley mouse, to characterize response to exercise via determination of critical speed (CS), a functional measurement of mouse running speed upon exerting to exhaustion. Results: Upon observing a wide distribution in critical speed phenotypes, we systematically determined metabolic aberrations in plasma and organs-including heart, kidney, liver, lung, and spleen-from mice ranked based on critical speed performances (top vs. bottom 25%). Results indicated clear signatures of systemic and organ-specific alterations in carboxylic acids, sphingosine 1-phosphate and acylcarnitine metabolism. Metabolites in these pathways showed significant correlations with critical speed across all matrices. Findings from murine models were thus further validated in 433 sickle cell disease patients (SS genotype). Metabolomics analyses of plasma from 281 subjects in this cohort (with HbA < 10% to decrease confounding effects of recent transfusion events) were used to identify metabolic correlates to sub-maximal exercise test performances, as measure by 6 min walking test in this clinical cohort. Results confirmed strong correlation between test performances and dysregulated levels of circulating carboxylic acids (especially succinate) and sphingosine 1-phosphate. Discussion: We identified novel circulating metabolic markers of exercise intolerance in mouse models of sickle cell disease and sickle cell patients.

12.
Biomacromolecules ; 24(4): 1855-1870, 2023 04 10.
Article En | MEDLINE | ID: mdl-36877888

Red blood cell (RBC) substitutes tested in late-phase clinical trials contained low-molecular-weight hemoglobin species (<500 kDa), resulting in vasoconstriction, hypertension, and oxidative tissue injury; therefore, contributing to poor clinical outcomes. This work aims to improve the safety profile of the RBC substitute, polymerized human hemoglobin (PolyhHb), via in vitro and in vivo screening of PolyhHb fractionated into four molecular weight brackets (50-300 kDa [PolyhHb-B1]; 100-500 kDa [PolyhHb-B2]; 500-750 kDa [PolyhHb-B3]; and 750 kDa to 0.2 µm [PolyhHb-B4]) using a two-stage tangential flow filtration purification process. Analysis showed that PolyhHb's oxygen affinity, and haptoglobin binding kinetics decreased with increasing bracket size. A 25% blood-for-PolyhHb exchange transfusion guinea pig model suggests that hypertension and tissue extravasation decreased with increasing bracket size. PolyhHb-B3 demonstrated extended circulatory pharmacokinetics, no renal tissue distribution, no aberrant blood pressure, or cardiac conduction effects, and may therefore be appropriate material for further evaluation.


Blood Substitutes , Hemoglobins , Humans , Animals , Guinea Pigs , Hemoglobins/chemistry , Oxygen/metabolism , Polymerization , Blood Substitutes/pharmacology , Erythrocytes/metabolism
13.
J Thromb Thrombolysis ; 55(3): 566-570, 2023 Apr.
Article En | MEDLINE | ID: mdl-36508084

BACKGROUND: Assessing simultaneous generation of thrombin (TG) and plasmin (PG) is an approach to evaluate the balance between coagulation and fibrinolysis with sensitivity to predict endogenous thrombin and plasmin generation. The addition of thrombomodulin (TM), provides the essential component for thrombin activation of protein C and thrombin-activatable fibrinolysis inhibitor. However, the influence of sex on the balance between TG and PG with and without TM addition has not been investigated to date. OBJECTIVES: To investigate the possible sex-based differences in TG and PG in the presence and absence of TM. METHODS: Simultaneous TG and PG were measured in plasma samples obtained from 17 males and 17 females upon tissue factor and tissue plasminogen activator addition. Thrombin- and plasmin-specific fluorogenic substrates Z-Gly-Gly-Arg-AMC and Boc-Glu-Lys-Lys-AMC were used in the study. Thrombin and plasmin peak height (TPH and PPH) and production rate (TPR and PPR) values were determined. To evaluate the balance between TG and PG, the ratios between TPH and PPH (TPH/PPH) and TPR and PPR (TPR/PPR) were calculated. RESULTS AND CONCLUSIONS: TPH between males and females demonstrated significant difference regardless of TM addition. TPR demonstrated differences between males and females only upon TM addition, while PG parameters was not dependent on the sex of the donor. TM significantly lowered TPH/PPH in males, and enhanced TPR/PPR in females. Thus, TPH/PPH and TPR/PPR significantly differed between men and women. Our results indicate that TM may act differently in males and females by shifting the underlying TG/PG balance to fibrinolysis in males and to coagulation in females.


Fibrinolysin , Thrombin , Male , Female , Humans , Thrombin/metabolism , Tissue Plasminogen Activator , Thrombomodulin/metabolism , Fibrinolysis/physiology
14.
Int J Pharm ; 632: 122557, 2023 Feb 05.
Article En | MEDLINE | ID: mdl-36584863

Intravenous administration of abuse-deterrent opioid products poses high safety risks, in part due to the presence of high molecular weight polymeric excipients. Previous in vivo studies in animal models have shown that the higher molecular weight (Mw) polymeric excipients like polyethylene oxide (PEO) were directly linked to such adverse responses as intravenous hemolysis and kidney damage. PEO polymers have been widely used in abuse-deterrent formulations (ADF) of opioid products, adding to concerns over the general safety of the opioid category due to the unknown safety risk from abuse via unintended routes. The current study focused on the determination of the critical overlap concentration (c*) at various PEO molecular weights to aid in explaining differences in observed adverse responses from previous animal studies on the intravenous administration of PEO solutions. Adverse in vivo responses may be related to the viscoelastic regime of the polymer solution, which depends not only on Mw but also on concentration. Having a localized polymer concentration in the blood above the c*, i.e., the transition from the dilute to semi-dilute entangled viscoelastic regime, may influence the flow behavior and interactions of cells in the blood. The relationship of c* to this combination of physical, chemical, and rheological effects is a possible driving force behind adverse in vivo responses.


Analgesics, Opioid , Opioid-Related Disorders , Humans , Excipients , Polyethylene Glycols/adverse effects , Polyethylene Glycols/chemistry , Drug Compounding , Administration, Intravenous , Opioid-Related Disorders/prevention & control
16.
Blood Transfus ; 21(4): 314-326, 2023 07.
Article En | MEDLINE | ID: mdl-35969134

BACKGROUND: The use of omics technologies in human transfusion medicine has improved our understanding of the red blood cell (RBC) storage lesion(s). Despite significant progress towards understanding the storage lesion(s) of human RBCs, a comparison of basal and post-storage RBC metabolism across multiple species using omics technologies has not yet been reported, and is the focus of this study. MATERIALS AND METHODS: Blood was collected in a standard bag system (CPD-SAG-Mannitol) from dogs (n=8), horses, bovines, and donkeys (n=6). All bags were stored at 4°C for up to 42 days (i.e., the end of the shelf life in Italian veterinary clinics) and sampled weekly for metabolomics analyses. In addition, data comparisons to our ongoing Zoomics project are included to compare this study's results with those of non-human primates and humans. RESULTS: Significant interspecies differences in RBC metabolism were observed at baseline, at the time of donation, with bovine showing significantly higher levels of metabolites in the tryptophan/kynurenine pathway; dogs showing elevated levels of high-energy compounds (especially adenosine triphosphate and S-adenosyl-methionine) and equine (donkey and horse) RBCs showing almost overlapping phenotypes, with the highest levels of free branched chain amino acids, glycolytic metabolites (including 2,3-diphosphoglycerate), higher total glutathione pools, and elevated metabolites of the folate pathway compared to the other species. Strikingly, previously described metabolic markers of the storage lesion(s) in humans followed similar trends across all species, though the rate of accumulation/depletion of metabolites in energy and redox metabolism varied by species, with equine blood showing the lowest degree of storage lesion(s). DISCUSSION: These results interrogate RBC metabolism across a range of mammalian species and improve our understanding of both human and veterinary blood storage and transfusion.


Blood Preservation , Equidae , Female , Horses , Humans , Animals , Cattle , Dogs , Blood Preservation/methods , Erythrocytes/metabolism , Metabolomics/methods , Glycolysis
17.
Sci Rep ; 12(1): 22191, 2022 12 23.
Article En | MEDLINE | ID: mdl-36564503

Extracellular vesicles (EVs) participate in cell-to-cell communication and contribute toward homeostasis under physiological conditions. But EVs can also contribute toward a wide array of pathophysiology like cancer, sepsis, sickle cell disease, and thrombotic disorders. COVID-19 infected patients are at an increased risk of aberrant coagulation, consistent with elevated circulating levels of ultra-high molecular weight VWF multimers, D-dimer and procoagulant EVs. The role of EVs in COVID-19 related hemostasis may depend on cells of origin, vesicular cargo and size, however this is not well defined. We hypothesized that the procoagulant potential of EV isolates from COVID-19 (+) patient plasmas could be defined by thrombin generation assays. Here we isolated small EVs (SEVs) and large EVs (LEVs) from hospitalized COVID-19 (+) patient (n = 21) and healthy donor (n = 20) plasmas. EVs were characterized by flow cytometry, Transmission electron microscopy, nanoparticle tracking analysis, plasma thrombin generation and a multi-omics approach to define coagulation potential. These data were consistent with differences in EV metabolite, lipid, and protein content when compared to healthy donor plasma isolated SEVs and LEVs. Taken together, the effect of EVs on plasma procoagulant potential as defined by thrombin generation and supported by multi-omics is enhanced in COVID-19. Further, we observe that this effect is driven both by EV size and phosphatidyl serine.


COVID-19 , Extracellular Vesicles , Thrombosis , Humans , Thrombin/metabolism , COVID-19/complications , Extracellular Vesicles/metabolism , Blood Coagulation , Thrombosis/metabolism
18.
Clin Appl Thromb Hemost ; 28: 10760296221120422, 2022.
Article En | MEDLINE | ID: mdl-35996317

INTRODUCTION: Protease activated receptors 1 (PAR1) and 4 (PAR4) agonists are used to study platelet activation. Data on platelet activation are extrapolated across experimental settings. C1-inhibitor (C1INH) is a protease inhibitor present in plasma but not in isolated platelet suspensions. Here we show that C1INH affects platelet activation through PAR1 and PAR4 agonists. METHODS: Platelets were isolated from healthy donor whole blood and then labeled with anti-CD62P and PAC1 antibodies. The platelet suspensions were exposed to PAR1 agonists SFLLRN, TFLLR and TFLLRN; PAR4 agonists AYPGKF and GYPGQV; ADP and thrombin. Flow-cytometric measurements were performed in 5, 10 and 15 min after activation. RESULTS: 0.25 mg/ml C1INH addition made platelets to faster expose CD62P and glycoprotein IIb/IIIa complex after activation with PAR1 agonists. Conversely, C1INH addition led to inhibition of platelet activation with PAR4 agonists and thrombin. Activation with ADP was not affected by C1INH. CONCLUSIONS: Our results suggest that C1INH can modify platelet activation in the presence of synthetic PAR agonists used in platelet research. These observations may be relevant to the development of new methods to assess platelet function.


Complement C1 Inhibitor Protein , Receptor, PAR-1 , Receptors, Thrombin , Blood Platelets , Complement C1 Inhibitor Protein/physiology , Humans , Platelet Activation , Platelet Aggregation , Receptor, PAR-1/physiology , Receptors, Thrombin/agonists , Receptors, Thrombin/physiology , Thrombin/pharmacology
19.
Blood ; 140(17): 1837-1844, 2022 10 27.
Article En | MEDLINE | ID: mdl-35660854

During hemolysis, erythrophagocytes dispose damaged red blood cells. This prevents the extracellular release of hemoglobin, detoxifies heme, and recycles iron in a linked metabolic pathway. Complementary to this process, haptoglobin and hemopexin scavenge and shuttle the red blood cell toxins hemoglobin and heme to cellular clearance. Pathological hemolysis outpaces macrophage capacity and scavenger synthesis across a diversity of diseases. This imbalance leads to hemoglobin-driven disease progression. To meet a void in treatment options, scavenger protein-based therapeutics are in clinical development.


Hemolysis , Hemopexin , Humans , Hemoglobins/metabolism , Haptoglobins/metabolism , Haptoglobins/therapeutic use , Heme/metabolism
20.
Blood ; 140(7): 769-781, 2022 08 18.
Article En | MEDLINE | ID: mdl-35714304

Sickle cell disease (SCD) is an inherited hemolytic anemia caused by a single point mutation in the ß-globin gene of hemoglobin that leads to synthesis of sickle hemoglobin (HbS) in red blood cells (RBCs). HbS polymerizes in hypoxic conditions, leading to intravascular hemolysis, release of free hemoglobin and heme, and increased adhesion of blood cells to the endothelial vasculature, which causes painful vaso-occlusion and organ damage. HbS polymerization kinetics are strongly dependent on the intracellular HbS concentration; a relatively small reduction in cellular HbS concentration may prevent HbS polymerization and its sequelae. We hypothesized that iron restriction via blocking ferroportin, the unique iron transporter in mammals, might reduce HbS concentration in RBCs, thereby decreasing hemolysis, improving blood flow, and preventing vaso-occlusive events. Indeed, vamifeport (also known as VIT-2763), a clinical-stage oral ferroportin inhibitor, reduced hemolysis markers in the Townes model of SCD. The RBC indices of vamifeport-treated male and female Townes mice exhibited changes attributable to iron-restricted erythropoiesis: decreased corpuscular hemoglobin concentration mean and mean corpuscular volume, as well as increased hypochromic and microcytic RBC fractions. Furthermore, vamifeport reduced plasma soluble VCAM-1 concentrations, which suggests lowered vascular inflammation. Accordingly, intravital video microscopy of fluorescently labeled blood cells in the microvasculature of Townes mice treated with vamifeport revealed diminished adhesion to the endothelium and improved hemodynamics. These preclinical data provide a strong proof-of-concept for vamifeport in the Townes model of SCD and support further development of this compound as a potential novel therapy in SCD.


Anemia, Sickle Cell , Hemolysis , Anemia, Sickle Cell/complications , Animals , Cation Transport Proteins , Disease Models, Animal , Female , Hemodynamics , Hemoglobin, Sickle/genetics , Hemoglobin, Sickle/metabolism , Hemoglobins/metabolism , Iron/therapeutic use , Male , Mammals/metabolism , Mice
...